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Conditional Independence Testing 
 

•  Given     samples i.i.d from                        distinguish between: 

•    

•         

 
       

•  Non-parametric conditional independence testing for continuous r.v’s 

•  Applications in Causal Inference [23,14], Bayesian Networks [15,27], 
Feature Selection [16,31]….. 
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Warm-up (Model-Powered Independence Test) 
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•  Powerful classifiers like XGBoost, Deep Nets can be used  
•  Works well even for large dimensions  
•  More info at [19] 

Discussion and Prior Work 
 
•  For CI test using classifiers, we need to modify a part of the samples 

in order to emulate i.i.d samples coming from                   .   

•      column can no longer be shuffled randomly, instead the operation 
on     column must depend on the      column. 

•  (Prior Work) Permutation of      column dependent on      column 
has been explored before (KCIPT [10]). However, KCIPT requires 
solving expensive LP, lacks strong theoretical guarantees and uses 
a kernel based method for two-sample testing.  Other state of the art 
CI testing methods like KCIT [32], RCIT [28] are kernel based. 

•  (Our Work) The key idea is to use a nearest-neighbor based 
bootstrap procedure on a part of the total samples to create a data-
set that approximately simulates i.i.d samples from                    .           

•  A classifier is then used to distinguish between the bootstrapped 
samples and the original samples, similar to independence testing 
above.  

•  If the classifier is able to distinguish well, then               and         is 
rejected. If the classifier fails to distinguish, then we fail to reject      .    
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Model-Powered CI Test 
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•  If                                  ,  then we reject       .    
•  Otherwise, we fail to reject        . 

L(ĝ,De) > 0.5 + ⌧ H0

H0

Nearest-Neighbor Bootstrap 
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Intuition: 
•  If       is close to       then                                

under smoothness assumptions.  

•  When     is such that          is high, then      
is close to     . If          is low, then       is a 
rare point and does not matter much.  
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Assumptions and Result: 
•    

•    
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Assume for all z 2 Rdz
and all a such that ka� zk2  ✏1, �max

(I
a

(z))  �.

The probability density function f(z) satisfies the following:
(1) f(z) is twice continuously di↵erentiable and the Hessian matrix Hf sat-

isfies kHf (z)k2  cdz almost everywhere, where cdz is only dependent on the
dimension.

(2)
R
f(z)1�1/ddz  c3, 8d � 2 where c3 is a constant.

Here �(x, y, z) is the marginal distribution of one sample in the bootstrapped
data-set, and G(�) = P(f(Z)  �).

Classification Guarantees 
 

•  The marginal distributions of the classes in the classification problem that needs to 
be solved is given by, 

•  However, the samples with label 0 are not i.i.d because of the nearest-neighbor 
bootstrap. We show that the samples are near i.i.d in a spatial sense and 
classification guarantees still hold under this setting.  

•  Let       be the class of classifying functions with VC dimension      . Let the risk of a 
classifier we defined as                                         .  The optimal classifier in the 
class is                                   .  

•                 
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Main Result: Suppose the class of classifying functions is such that Rq(g
⇤
q ) 

r0 + ⌘. Here, r0 , 0.5(1� dTV (q(x, y, z|1), q(x, y, z|0))) is the risk of the Bayes
optimal classifier when q(` = 1) = q(` = 0). This is the best loss that any
classifier can achieve for this classification problem. Under this setting, w.p at
least 1� 8� we have:
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Bias-Correction and Choice of Threshold  
  

  
 
 
  

⌧⌧⌧
•  In the case of finite samples and because of non-i.i.d’ness, the trained classifier       may be 

able to achieve a loss                                  , when null hypothesis holds.  The bias    can be 
corrected by training another classifier     without using the X-coordinates. The loss of     on 
the test set is expected to be                 under both hypothesis, and therefore can be 
subtracted. More details in our paper [0].  

•  Under null hypothesis by VC theory, the risk of the classifier is a sub-gaussian random 
variable centered at 0.5 with variance                  . Therefor,                   is a good choice of 
threshold. We also discuss a robust bootstrap method to choose the threshold in [0]. 
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L(ĝ,De) = 0.5� b

ĝ0
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Empirical Results 
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Synthetic Experiments: The experiments are performed in the post-nonlinear 
noise setting (popular in literature).  
 
 
 
The dimensions of X and Y are fixed at 1, while dimension of Z is varied. In 
this experiment, n = 1000. ROC AUC over 300 data-sets are used to generate 
each point in the plot, half of the data-sets being CI and vice-versa. 
 
 
 

H0 : X = cos(aTZ + ⌘1), Y = cos(bTZ + ⌘2)
H1 : X = cos(aTZ + ⌘1), Y = cos(bTZ + cX + ⌘2)

Flow-Cytometry Data [26]: This data-set has observational and 
interventional data which gives expression levels of 11 proteins under 
various conditions. 
The ground truth graph is not known with certainty. We use three graphs 
popularly accepted in literature [1(a,b,c) in [22] ], as the ground truth. 
Using these graphs as ground truth, we generate CI and non-CI relations 
that should hold between the variables, according to these graphs.  
 
The ROC-AUC results are shown in the table on the left. We see that our 
algorithm outperforms KCIT and RCIT, on all three graphs as ground 
truth. ROC curve is shown on the left for the experiments considering 
one of the graphs [1(b) in [22] ] as ground-truth.  

References: The references in this poster follow the indexing in the arxiv version of our work [0] (accepted for publication in 
NIPS 2017).  
[0] Sen, R., Suresh, A.T., Shanmugam, K., Dimakis, A. G., & Shakkottai, S. (2017). Model-Powered Conditional Independence 
Test. arXiv preprint arXiv:1709.06138.  
 
Python Package: https://github.com/rajatsen91/CCIT   [pip install CCIT] 
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