
Model-Powered Conditional Independence Test
Rajat Sen*, Ananda Theertha Suresh§, Karthikeyan Shanmugam¶, Alexandros G. Dimakis* and Sanjay Shakkottai*

 *University of Texas at Austin, §Google, New York ,¶IBM Research, New York

Conditional Independence Testing

•  Given samples i.i.d from distinguish between:

• 

• 

•  Non-parametric conditional independence testing for continuous r.v’s

•  Applications in Causal Inference [23,14], Bayesian Networks [15,27],
Feature Selection [16,31]…..

n fX,Y,Z(x, y, z)

H0: X ?? Y |Z , fX,Y,Z(x, y, z) = f

CI(x, y, z)

H1: X 6?? Y |Z , fX,Y,Z(x, y, z) 6= f

CI(x, y, z)

f

CI(x, y, z) = fX|Z(x|z)fY |Z(y|z)fZ(z)

Warm-up (Model-Powered Independence Test)

 X Y

x1 y1

...

X Y

...

X Y

...

Shuffle Y
column

f(x, y)

f(x)f(y)

l

l

1

0

Training
Set

Test
Set

G

ĝ (Trained Classifier)

L(ĝ,De) (Test Error)

De

DrX ?? Y ?

n samples

•  Powerful classifiers like XGBoost, Deep Nets can be used
•  Works well even for large dimensions
•  More info at [19]

Discussion and Prior Work

•  For CI test using classifiers, we need to modify a part of the samples

in order to emulate i.i.d samples coming from .

•  column can no longer be shuffled randomly, instead the operation
on column must depend on the column.

•  (Prior Work) Permutation of column dependent on column
has been explored before (KCIPT [10]). However, KCIPT requires
solving expensive LP, lacks strong theoretical guarantees and uses
a kernel based method for two-sample testing. Other state of the art
CI testing methods like KCIT [32], RCIT [28] are kernel based.

•  (Our Work) The key idea is to use a nearest-neighbor based
bootstrap procedure on a part of the total samples to create a data-
set that approximately simulates i.i.d samples from .

•  A classifier is then used to distinguish between the bootstrapped
samples and the original samples, similar to independence testing
above.

•  If the classifier is able to distinguish well, then and is
rejected. If the classifier fails to distinguish, then we fail to reject .

f

CI(x, y, z)

Y
Y Z

Y Z

f

CI(x, y, z)

f 6= fCI H0

H0

Model-Powered CI Test

X Y Z
x1 y1 z1

...

X Y Z
...

Original Samples

X Y Z

...

X Y Z
...

`
1
...

1

+

`
...

0

0

+

Shu✏e

Training
Set

Test
Set

G

ĝ (Trained Classifier)

L(ĝ,De) (Test Error)

De

Dr

3n Original
Samples

n

2nOriginal
Samples

Nearest

Neighbor

Bootstrap

U 0
2

U1

n samples

close to fCI

x3n y3n z3n

•  If , then we reject .
•  Otherwise, we fail to reject .

L(ĝ,De) > 0.5 + ⌧ H0

H0

Nearest-Neighbor Bootstrap

X Y Z

...

2nOriginal
Samples

X Y Z

...

n samples

X Y Z

...

n samples

Randomly
divide

U2

U3

x1 y1 z1

x2 y2 z2

z2 is the nearest

neighbor of z1 in U3.

Create the sample

x1 y2 z1

X Y Z

...

n samples

Intuition:
•  If is close to then

under smoothness assumptions.

•  When is such that is high, then
is close to . If is low, then is a
rare point and does not matter much.

z1 f(z1) z2
z1 f(z1) z1

z1z2 f(y|z1) ⇠ f(y|z2)

f(z)

z

z1

z1

z2

z2

Assumptions and Result:
• 

• 

For z 2 Rdz
, a such that ka� zk2  ✏1, the generalized curvature matrix I

a

(z)
is,

I
a

(z)
ij

=

@2

@z0
i

@z0
j

Z
log

f(y|z)
f(y|z0)f(y|z)dy

!�����
z

0=a

= E
"
��2 log f(y|z0)

�z0
i

�z0
j

���
z

0=a

�����Z = z

#

Assume for all z 2 Rdz
and all a such that ka� zk2  ✏1, �max

(I
a

(z))  �.

The probability density function f(z) satisfies the following:
(1) f(z) is twice continuously di↵erentiable and the Hessian matrix Hf sat-

isfies kHf (z)k2  cdz almost everywhere, where cdz is only dependent on the
dimension.

(2)
R
f(z)1�1/ddz  c3, 8d � 2 where c3 is a constant.

Here �(x, y, z) is the marginal distribution of one sample in the bootstrapped
data-set, and G(�) = P(f(Z)  �).

Classification Guarantees

•  The marginal distributions of the classes in the classification problem that needs to
be solved is given by,

•  However, the samples with label 0 are not i.i.d because of the nearest-neighbor
bootstrap. We show that the samples are near i.i.d in a spatial sense and
classification guarantees still hold under this setting.

•  Let be the class of classifying functions with VC dimension . Let the risk of a
classifier we defined as . The optimal classifier in the
class is .

• 

q(x, y, z|` = 1) = fX,Y,Z(x, y, z) =

⇢
f

CI
(x, y, z) if H0 holds

6= f

CI
(x, y, z) if H1 holds

q(x, y, z|` = 0) = �X,Y,Z(x, y, z)

G V
Rq (g) = E(u,l)⇠q

⇥
1g(u) 6=l

⇤

g⇤q = argming2GRq(g)

Main Result: Suppose the class of classifying functions is such that Rq(g
⇤
q) 

r0 + ⌘. Here, r0 , 0.5(1� dTV (q(x, y, z|1), q(x, y, z|0))) is the risk of the Bayes
optimal classifier when q(` = 1) = q(` = 0). This is the best loss that any
classifier can achieve for this classification problem. Under this setting, w.p at
least 1� 8� we have:

1

2

�
1� dTV (f, f

CI)
�
� b(n)

2
 Rq(ĝ) 

1

2

�
1� dTV (f, f

CI)
�
+

b(n)

2
+ ⌘ + �n

Here, �n = O
⇣p

V
⇣
n�1/3 +

p
2dz/n

⌘⌘

Bias-Correction and Choice of Threshold

⌧⌧⌧
•  In the case of finite samples and because of non-i.i.d’ness, the trained classifier may be

able to achieve a loss , when null hypothesis holds. The bias can be
corrected by training another classifier without using the X-coordinates. The loss of on
the test set is expected to be under both hypothesis, and therefore can be
subtracted. More details in our paper [0].

•  Under null hypothesis by VC theory, the risk of the classifier is a sub-gaussian random
variable centered at 0.5 with variance . Therefor, is a good choice of
threshold. We also discuss a robust bootstrap method to choose the threshold in [0].

ĝ
L(ĝ,De) = 0.5� b

ĝ0

0.5� b

O(1/
p
n) ⌧ = 1/

p
n

Empirical Results

0 5 20 50 70 100 150
Dimension of Z

0.6

0.7

0.8

0.9

1.0

R
O

C
A
U

C

CCIT

RCIT

KCIT
Synthetic Experiments: The experiments are performed in the post-nonlinear
noise setting (popular in literature).

The dimensions of X and Y are fixed at 1, while dimension of Z is varied. In
this experiment, n = 1000. ROC AUC over 300 data-sets are used to generate
each point in the plot, half of the data-sets being CI and vice-versa.

H0 : X = cos(aTZ + ⌘1), Y = cos(bTZ + ⌘2)
H1 : X = cos(aTZ + ⌘1), Y = cos(bTZ + cX + ⌘2)

Flow-Cytometry Data [26]: This data-set has observational and
interventional data which gives expression levels of 11 proteins under
various conditions.
The ground truth graph is not known with certainty. We use three graphs
popularly accepted in literature [1(a,b,c) in [22]], as the ground truth.
Using these graphs as ground truth, we generate CI and non-CI relations
that should hold between the variables, according to these graphs.

The ROC-AUC results are shown in the table on the left. We see that our
algorithm outperforms KCIT and RCIT, on all three graphs as ground
truth. ROC curve is shown on the left for the experiments considering
one of the graphs [1(b) in [22]] as ground-truth.

References: The references in this poster follow the indexing in the arxiv version of our work [0] (accepted for publication in
NIPS 2017).
[0] Sen, R., Suresh, A.T., Shanmugam, K., Dimakis, A. G., & Shakkottai, S. (2017). Model-Powered Conditional Independence
Test. arXiv preprint arXiv:1709.06138.

Python Package: https://github.com/rajatsen91/CCIT [pip install CCIT]

Main Result: dTV (fCI ,�)  b(n) , O �
1

n1/dz

�
+G(2cdz✏

2
1)

x 2 Rd
x

y 2 Rd
y

z 2 Rd
z

b
ĝ0

